3.20.51 \(\int \frac {1}{(d+e x)^2 \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [1951]

Optimal. Leaf size=111 \[ \frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 \left (c d^2-a e^2\right ) (d+e x)^2}+\frac {4 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 \left (c d^2-a e^2\right )^2 (d+e x)} \]

[Out]

2/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e^2+c*d^2)/(e*x+d)^2+4/3*c*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)
^(1/2)/(-a*e^2+c*d^2)^2/(e*x+d)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {672, 664} \begin {gather*} \frac {4 c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 (d+e x) \left (c d^2-a e^2\right )^2}+\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 (d+e x)^2 \left (c d^2-a e^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*(c*d^2 - a*e^2)*(d + e*x)^2) + (4*c*d*Sqrt[a*d*e + (c*d^2 +
 a*e^2)*x + c*d*e*x^2])/(3*(c*d^2 - a*e^2)^2*(d + e*x))

Rule 664

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^m*((a +
b*x + c*x^2)^(p + 1)/((p + 1)*(2*c*d - b*e))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] &&
 EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rule 672

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e)*(d + e*x)^m*((a
 + b*x + c*x^2)^(p + 1)/((m + p + 1)*(2*c*d - b*e))), x] + Dist[c*(Simplify[m + 2*p + 2]/((m + p + 1)*(2*c*d -
 b*e))), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a
*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[Simplify[m + 2*p + 2], 0]

Rubi steps

\begin {align*} \int \frac {1}{(d+e x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 \left (c d^2-a e^2\right ) (d+e x)^2}+\frac {(2 c d) \int \frac {1}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{3 \left (c d^2-a e^2\right )}\\ &=\frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 \left (c d^2-a e^2\right ) (d+e x)^2}+\frac {4 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 \left (c d^2-a e^2\right )^2 (d+e x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 61, normalized size = 0.55 \begin {gather*} \frac {2 \sqrt {(a e+c d x) (d+e x)} \left (-a e^2+c d (3 d+2 e x)\right )}{3 \left (c d^2-a e^2\right )^2 (d+e x)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[(a*e + c*d*x)*(d + e*x)]*(-(a*e^2) + c*d*(3*d + 2*e*x)))/(3*(c*d^2 - a*e^2)^2*(d + e*x)^2)

________________________________________________________________________________________

Maple [A]
time = 0.71, size = 131, normalized size = 1.18

method result size
trager \(-\frac {2 \left (-2 c d e x +e^{2} a -3 c \,d^{2}\right ) \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}{3 \left (a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}\right ) \left (e x +d \right )^{2}}\) \(81\)
gosper \(-\frac {2 \left (c d x +a e \right ) \left (-2 c d e x +e^{2} a -3 c \,d^{2}\right )}{3 \left (e x +d \right ) \left (a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}\right ) \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}\) \(89\)
default \(\frac {-\frac {2 \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{3 \left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{2}}+\frac {4 c d e \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{3 \left (e^{2} a -c \,d^{2}\right )^{2} \left (x +\frac {d}{e}\right )}}{e^{2}}\) \(131\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/e^2*(-2/3/(a*e^2-c*d^2)/(x+d/e)^2*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+4/3*c*d*e/(a*e^2-c*d^2)^2/(x
+d/e)*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c*d^2-%e^2*a>0)', see `assume?
` for more d

________________________________________________________________________________________

Fricas [A]
time = 3.29, size = 141, normalized size = 1.27 \begin {gather*} \frac {2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d x e + 3 \, c d^{2} - a e^{2}\right )}}{3 \, {\left (2 \, c^{2} d^{5} x e + c^{2} d^{6} - 4 \, a c d^{3} x e^{3} + a^{2} x^{2} e^{6} + 2 \, a^{2} d x e^{5} - {\left (2 \, a c d^{2} x^{2} - a^{2} d^{2}\right )} e^{4} + {\left (c^{2} d^{4} x^{2} - 2 \, a c d^{4}\right )} e^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

2/3*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(2*c*d*x*e + 3*c*d^2 - a*e^2)/(2*c^2*d^5*x*e + c^2*d^6 - 4*a*c
*d^3*x*e^3 + a^2*x^2*e^6 + 2*a^2*d*x*e^5 - (2*a*c*d^2*x^2 - a^2*d^2)*e^4 + (c^2*d^4*x^2 - 2*a*c*d^4)*e^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(1/(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)**2), x)

________________________________________________________________________________________

Giac [A]
time = 1.25, size = 177, normalized size = 1.59 \begin {gather*} -\frac {4 \, \sqrt {c d} c d e^{\frac {1}{2}} \mathrm {sgn}\left (\frac {1}{x e + d}\right )}{3 \, {\left (c^{2} d^{4} e - 2 \, a c d^{2} e^{3} + a^{2} e^{5}\right )}} + \frac {2 \, {\left (3 \, \sqrt {c d e - \frac {c d^{2} e}{x e + d} + \frac {a e^{3}}{x e + d}} c d e - {\left (c d e - \frac {c d^{2} e}{x e + d} + \frac {a e^{3}}{x e + d}\right )}^{\frac {3}{2}}\right )}}{3 \, {\left (c d^{2} e^{2} - a e^{4}\right )} {\left (c d^{2} \mathrm {sgn}\left (\frac {1}{x e + d}\right ) - a e^{2} \mathrm {sgn}\left (\frac {1}{x e + d}\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

-4/3*sqrt(c*d)*c*d*e^(1/2)*sgn(1/(x*e + d))/(c^2*d^4*e - 2*a*c*d^2*e^3 + a^2*e^5) + 2/3*(3*sqrt(c*d*e - c*d^2*
e/(x*e + d) + a*e^3/(x*e + d))*c*d*e - (c*d*e - c*d^2*e/(x*e + d) + a*e^3/(x*e + d))^(3/2))/((c*d^2*e^2 - a*e^
4)*(c*d^2*sgn(1/(x*e + d)) - a*e^2*sgn(1/(x*e + d))))

________________________________________________________________________________________

Mupad [B]
time = 0.72, size = 69, normalized size = 0.62 \begin {gather*} \frac {2\,\left (3\,c\,d^2+2\,c\,x\,d\,e-a\,e^2\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{3\,{\left (a\,e^2-c\,d^2\right )}^2\,{\left (d+e\,x\right )}^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d + e*x)^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

(2*(3*c*d^2 - a*e^2 + 2*c*d*e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(3*(a*e^2 - c*d^2)^2*(d + e*x)
^2)

________________________________________________________________________________________